
Team Members:
Tyler Dionne (tdionne2021@my.fit.edu), Kendall Kelly (kelly2021@my.fit.edu)

Project Advisor:
Sneha Sudhakaran, ssudhakaran@fit.edu

Project Title:
FIT Automated Transfer Credit Evaluation

Client:
Sneha Sudhakaran

Website:
https://tylerdionne.github.io/ATCE-FIT/index.html

Milestone 4 Progress Evaluation

1. Progress of Current Milestone:

Task Completion % Tyler Kendall To Do

Create new directory
for Flask Project

100% 100% N/A

Set up virtual
environment and
install Flask

100% 100% N/A

Move html files to a
‘templates’ directory

100% 100% N/A

Modify html templates
to use Jinja2
templating

100% 100% N/A

Create static directory
for css, js, images
and docs

100% 100% N/A

Separate css and
javascript from the
html files and move

100% 100% N/A

https://tylerdionne.github.io/ATCE-FIT/index.html

them to the static
directory. Move
documents to
/static/docs

Ensure references in
html use use url_for
to reference the static
files properly

100% 100% N/A

Set up app.py with
necessary imports
and configurations

100% 100% N/A

Define routes for each
html page

100% 100% N/A

Implement a
render_template()
method for each route

100% 100% N/A

Choose and install a
database
(SQLAlchemy)

100% 100% N/A

Create database
configuration in
app.py

100% 100% Implement a functional
user login system using
the database.

Set up a basic model
for future logins (User
model) and create
tables to test

100% 100% Implement a functional
user login system using
the model.

Test run site locally
and ensure
functionality of all
pages, images, files

100% 100% N/A

2. Discussion of Each Completed Task:

Set up Flask project structure

For this step the first task is to clone the repository with the contents of our current static
website hosted on github pages:

$ git clone https://github.com/tylerdionne/ATCE-FIT

The next step is to set up a virtual environment to isolate our project dependencies from
other Python projects and system-wide packages.

$ python3 -m venv venv

$ source venv/bin/activate

Install Flask:

$ pip install Flask

Set up static files

For this step the first task is to make a static directory within the project directory

$ mkdir static

$ mkdir static/css static/js static/images

Now we want to move all of our static files into this directory so we can reference them
using the Jinja2 templating later on in the html.

Given that the css for each html file are not separated into different files we must do so.

For each file repeat the following:

1. Create a css file for each html file in /static/css

2. Move the css code. Copy everything inside the <style> tag in the html file and paste it
into the new css file.

3. Link the css file in the html. Replace the <style> block in the html with a <link> tag
inside the <head> section. (ex. <link rel="stylesheet" href="/static/about.css">)

Now we want to move our javascript to the static directory as well. Given that atce.html
is the only file that uses javascript we can do this using the following method:

1. Create a file atce.js in /static/js

2. Move everything inside of the <script> tag into this file

3. Reference the javascript file in the html (ex. <script src="/static/js/atce.js"></script>)

The next step is to move our documentation into this folder given that our “docs” page
has the content for each milestone. This can be done with a /static/docs folder.

Now lastly we want to move any images we use into the /static/images folder.

For our example we only have one logo.png.

Convert static HTML to Flask templates with Jinja2
For this step the first task is to make a /templates directory within the project directory:
$ mkdir templates

Then move the html files into the templates directory:
$ mv *.html templates/

The next step is to prepare the html files with Jinja2 templating.

Example 1: The following line
Home

Would be changed to:
Home

Example 2: The following line:

Would be changed to:
<img src="{{ url_for('static', filename='logo.svg') }}" alt="Logo" style="width:150px;
height:auto;">

Example 3: The following line:
<script src="/static/js/atce.js"></script>

Would be changed to:

 <script src="{{ url_for('static', filename='js/atce.js') }}"></script>

Example 4: The following line:
<link rel="stylesheet" href="/static/about.css">

Would be changed to:
<link rel="stylesheet" href="{{ url_for('static', filename='css/about.css') }}">

Example 5: The following line:
<td>View Plan, Presentation</td>

Would be changed to:
<td> <a href="{{ url_for('static', filename='docs/s2-plan.pdf') }}"
class="document-link">View Plan, <a href="{{ url_for('static',
filename='docs/s2-plan-pres.pdf') }}" class="document-link">Presentation </td>

Example 6: The following line

Would be changed to:

Create a basic Flask application

First we must create an “app.py” file in the main project directory.

The “app.py” file in a Flask web app serves as the backend. It handles http requests,
routing urls to the appropriate html templates and manages the server side logic.

This file should define the applications routes, serve static/dynamic content and start the
web server.

The @app.route() function defines the routes for each html page.

The render_template() function loads the respective html file from the /templates
directory.

from flask import Flask, render_template, url_for

app = Flask(__name__)

@app.route('/')

def index():
 return render_template('index.html')

@app.route('/docs')
def docs():
 return render_template('docs.html')

@app.route('/atce')
def atce():
 return render_template('atce.html')

@app.route('/about')
def about():
 return render_template('about.html')

if __name__ == '__main__':
 app.run(debug=True)

From this point we should now be able to run the application locally from the main
project directory using the following command:

$ python3 app.py

Upon navigating to localhost port 5000 we can see the application has successfully
launched.

Setting Up Database Connectivity For Future User Logins in Flask

For this task the first step is to install SQLAlchemy with the following command:

$ pip install Flask-SQLAlchemy

The next step is to configure the database in Flask by adding the following to “app.py”:

from flask_sqlalchemy import SQLAlchemy
…
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///site.db'
app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False
db = SQLAlchemy(app)

The app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///site.db' tells Flask to use a
SQLite database stored in the project directory under site.db
The app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False disables
unnecessary overhead to improve performance.
The db = SQLAlchemy(app) initializes the SQLAlchemy object with the Flask app
instance and the db object will be used to interact with the database.

The next step is to define the User model by adding the following to “app.py” which will
define how user data will be stored:

class User(db.Model):
 id = db.Column(db.Integer, primary_key=True) # Unique user ID
 username = db.Column(db.String(20), unique=True, nullable=False) # Username
(must be unique)
 email = db.Column(db.String(120), unique=True, nullable=False) # Email (must be
unique)
 password = db.Column(db.String(60), nullable=False) # Hashed password

 def __repr__(self):
 return f"User('{self.username}', '{self.email}')"

The class User(db.Model) defines a new model class named User. Each model class
corresponds to a table in the database and in this case a table named user.

The id = db.Column(db.Integer, primary_key=True) creates a column named id in the
user table where the type is an integer and it is the primary key to make sure each user
has a unique identifier.

The username = db.Column(db.String(20), unique=True, nullable=False) defines a
column for the username and says that it can store strings up to 20 characters long,

must be unique so no two users can have the same username, and the nullable=False
parameter makes sure that it can't be empty.

The email and password follow similar rules.

The def __repr__(self) method defines how the User object gets represented as a string
so that when you print a User instance or view it this method returns a string that has
the username and the email in the format User(‘username’, ‘email’).

The next step is to create the database and the tables. This can be done by running a
few commands in a python shell.

$ python
>>> from app import app, db
>>> with app.app_context():
>>> … db.create_all()

We now see a site.db file

3. Team Member Contribution of Milestone 4:
Tyler Dionne - Modified html templates to use Jinja2 templating, created static directory
for css, js, images and docs, ensured references in html use use url_for to reference the
static files properly, chose and installed a database (SQLAlchemy), Create database
configuration in app.py, Set up a basic model for future logins (User model) and create
tables to test, implemented a render_template() method for each route.

Kendall Kelly - Created new directory for Flask Project, set up virtual environment and
install Flask, moved html files to a ‘templates’ directory, separated css and javascript
from the html files and move them to the static directory, moved documents to
/static/docs, set up app.py with necessary imports and configurations, defined routes for
each html page, Test run site locally and ensure functionality of all pages, images, files.

4. Plan for Milestone 5:

Task Tyler Kendall

Create a login page
HTML template

Will create a login page
HTML template

N/A

Design and implement
login form with email and
password fields

Will design and
implement login form
with email and password
fields

N/A

Add "Login" and "Sign
Up" buttons to the main
navigation

Will add "Login" and
"Sign Up" buttons to the
main navigation

N/A

Implement client-side
form validation

N/A Will implement client-side
form validation

Set up Flask-Login for
session management

N/A Will set up Flask-Login
for session management

Implement user
registration route and
logic

N/A Will implement user
registration route and
logic

Implement login route
and authentication logic

N/A Will implement login
route and authentication
logic

Add logout functionality Will add logout
functionality

N/A

Connect login form to
authentication routes

Will connect login form to
authentication routes

N/A

Implement error handling
and display messages to
users

N/A Will implement error
handling and display
messages to users

Create protected routes
for logged-in users

Will create protected
routes for logged-in
users

N/A

Add user profile page to
display account
information

N/A Will add user profile page
to display account
information

Dockerize the Flask
application

Will dockerize the Flask
application

N/A

Test the containerized
application
(build and run the Docker
container, verify all pages
and functionality work
correctly, test user
registration, login, and
logout processes, ensure
database connections
and data persistence)

Will test the
containerized application

Will test the
containerized application

5. Date(s) of meeting(s) with Client during the current milestone:

● Once a week every two weeks

6. Client feedback on the current milestone:

● See Faculty Advisor Feedback below

7. Date(s) of meeting(s) with Faculty Advisor during the current milestone:

● Once a week every two weeks

8. Faculty Advisor feedback on each task for the current Milestone:
Faculty Advisor Signature: _______________________________ Date: ________

Evaluation by Faculty Advisor

Faculty Advisor: detach and return this page to Dr. Chan (HC 209) or email the scores
to pkc@cs.fit.edu

Score (0-10) for each member: circle a score (or circle two adjacent scores for .25 or
write down a real number between 0 and 10)

Tyler
Dionne

0 1 2 3 4 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Kendall
Kelly

0 1 2 3 4 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Faculty Advisor Signature: _______________________________ Date: __________

